81 research outputs found

    Genes of intestinal Escherichia coli and their relation to the inflammatory activity in patients with ulcerative colitis and Crohn’s disease

    Get PDF
    Escherichia coli gene fimA was the most frequent gene that occurred in the intestine of all investigated groups. All subjects with fimA gene had significantly higher values of tumor necrosis factor alpha (TNF-α) and CRP than those with other E. coli genes. There was also a tendency to increased serum interleukin (IL)-6 levels in patients carrying the fimA gene; however, no relation was observed to serum IL-8 and IL-10. Patients with Crohn’s disease had significantly higher IL-6 than those with ulcerative colitis (UC) and controls. The highest levels of TNF-α were detected in the UC group. There were no significant differences in serum IL-8 and IL-10 between all three groups. The presence of E. coli gene fimA in the large bowel of patients with IBD is related to the immunological activity of the disease which may be important from the aspect of therapeutical strategy

    Drosophila EGFR pathway coordinates stem cell proliferation and gut remodeling following infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gut homeostasis is central to whole organism health, and its disruption is associated with a broad range of pathologies. Following damage, complex physiological events are required in the gut to maintain proper homeostasis. Previously, we demonstrated that ingestion of a nonlethal pathogen, <it>Erwinia carotovora carotovora 15</it>, induces a massive increase in stem cell proliferation in the gut of <it>Drosophila</it>. However, the precise cellular events that occur following infection have not been quantitatively described, nor do we understand the interaction between multiple pathways that have been implicated in epithelium renewal.</p> <p>Results</p> <p>To understand the process of infection and epithelium renewal in more detail, we performed a quantitative analysis of several cellular and morphological characteristics of the gut. We observed that the gut of adult <it>Drosophila </it>undergoes a dynamic remodeling in response to bacterial infection. This remodeling coordinates the synthesis of new enterocytes, their proper morphogenesis and the elimination of damaged cells through delamination and anoikis. We demonstrate that one signaling pathway, the epidermal growth factor receptor (EGFR) pathway, is key to controlling each of these steps through distinct functions in intestinal stem cells and enterocytes. The EGFR pathway is activated by the EGF ligands, Spitz, Keren and Vein, the latter being induced in the surrounding visceral muscles in part under the control of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. Additionally, the EGFR pathway synergizes with the JAK/STAT pathway in stem cells to promote their proliferation. Finally, we show that the EGFR pathway contributes to gut morphogenesis through its activity in enterocytes and is required to properly coordinate the delamination and anoikis of damaged cells. This function of the EGFR pathway in enterocytes is key to maintaining homeostasis, as flies lacking EGFR are highly susceptible to infection.</p> <p>Conclusions</p> <p>This study demonstrates that restoration of normal gut morphology following bacterial infection is a more complex phenomenon than previously described. Maintenance of gut homeostasis requires the coordination of stem cell proliferation and differentiation, with the incorporation and morphogenesis of new cells and the expulsion of damaged enterocytes. We show that one signaling pathway, the EGFR pathway, is central to all these stages, and its activation at multiple steps could synchronize the complex cellular events leading to gut repair and homeostasis.</p

    Butyrate Attenuates Lipopolysaccharide-Induced Inflammation in Intestinal Cells and Crohn's Mucosa through Modulation of Antioxidant Defense Machinery

    Get PDF
    Oxidative stress plays an important role in the pathogenesis of inflammatory bowel disease (IBD), including Crohn's disease (CrD). High levels of Reactive Oxygen Species (ROS) induce the activation of the redox-sensitive nuclear transcription factor kappa-B (NF-κB), which in turn triggers the inflammatory mediators. Butyrate decreases pro-inflammatory cytokine expression by the lamina propria mononuclear cells in CrD patients via inhibition of NF-κB activation, but how it reduces inflammation is still unclear. We suggest that butyrate controls ROS mediated NF-κB activation and thus mucosal inflammation in intestinal epithelial cells and in CrD colonic mucosa by triggering intracellular antioxidant defense systems. Intestinal epithelial Caco-2 cells and colonic mucosa from 14 patients with CrD and 12 controls were challenged with or without lipopolysaccaride from Escherichia Coli (EC-LPS) in presence or absence of butyrate for 4 and 24 h. The effects of butyrate on oxidative stress, p42/44 MAP kinase phosphorylation, p65-NF-κB activation and mucosal inflammation were investigated by real time PCR, western blot and confocal microscopy. Our results suggest that EC-LPS challenge induces a decrease in Gluthation-S-Transferase-alpha (GSTA1/A2) mRNA levels, protein expression and catalytic activity; enhanced levels of ROS induced by EC-LPS challenge mediates p65-NF-κB activation and inflammatory response in Caco-2 cells and in CrD colonic mucosa. Furthermore butyrate treatment was seen to restore GSTA1/A2 mRNA levels, protein expression and catalytic activity and to control NF-κB activation, COX-2, ICAM-1 and the release of pro-inflammatory cytokine. In conclusion, butyrate rescues the redox machinery and controls the intracellular ROS balance thus switching off EC-LPS induced inflammatory response in intestinal epithelial cells and in CrD colonic mucosa

    BRCA1 Regulates Follistatin Function in Ovarian Cancer and Human Ovarian Surface Epithelial Cells

    Get PDF
    Follistatin (FST), a folliculogenesis regulating protein, is found in relatively high concentrations in female ovarian tissues. FST acts as an antagonist to Activin, which is often elevated in human ovarian carcinoma, and thus may serve as a potential target for therapeutic intervention against ovarian cancer. The breast cancer susceptibility gene 1 (BRCA1) is a known tumor suppressor gene in human breast cancer; however its role in ovarian cancer is not well understood. We performed microarray analysis on human ovarian carcinoma cell line SKOV3 that stably overexpress wild-type BRCA1 and compared with the corresponding empty vector-transfected clones. We found that stable expression of BRCA1 not only stimulates FST secretion but also simultaneously inhibits Activin expression. To determine the physiological importance of this phenomenon, we further investigated the effect of cellular BRCA1 on the FST secretion in immortalized ovarian surface epithelial (IOSE) cells derived from either normal human ovaries or ovaries of an ovarian cancer patient carrying a mutation in BRCA1 gene. Knock-down of BRCA1 in normal IOSE cells demonstrates down-regulation of FST secretion along with the simultaneous up-regulation of Activin expression. Furthermore, knock-down of FST in IOSE cell lines as well as SKOV3 cell line showed significantly reduced cell proliferation and decreased cell migration when compared with the respective controls. Thus, these findings suggest a novel function for BRCA1 as a regulator of FST expression and function in human ovarian cells

    Intraperitoneal but Not Intravenous Cryopreserved Mesenchymal Stromal Cells Home to the Inflamed Colon and Ameliorate Experimental Colitis

    Get PDF
    BACKGROUND AND AIMS: Mesenchymal stromal cells (MSCs) were shown to have immunomodulatory activity and have been applied for treating immune-mediated disorders. We compared the homing and therapeutic action of cryopreserved subcutaneous adipose tissue (AT-MSCs) and bone marrow-derived mesenchymal stromal cells (BM-MSCs) in rats with trinitrobenzene sulfonic acid (TNBS)-induced colitis. METHODS: After colonoscopic detection of inflammation AT-MSCs or BM-MSCs were injected intraperitoneally. Colonoscopic and histologic scores were obtained. Density of collagen fibres and apoptotic rates were evaluated. Cytokine levels were measured in supernatants of colon explants. For cell migration studies MSCs and skin fibroblasts were labelled with Tc-99m or CM-DiI and injected intraperitonealy or intravenously. RESULTS: Intraperitoneal injection of AT-MSCs or BM-MSCs reduced the endoscopic and histopathologic severity of colitis, the collagen deposition, and the epithelial apoptosis. Levels of TNF-α and interleukin-1β decreased, while VEGF and TGF-β did not change following cell-therapy. Scintigraphy showed that MSCs migrated towards the inflamed colon and the uptake increased from 0.5 to 24 h. Tc-99m-MSCs injected intravenously distributed into various organs, but not the colon. Cm-DiI-positive MSCs were detected throughout the colon wall 72 h after inoculation, predominantly in the submucosa and muscular layer of inflamed areas. CONCLUSIONS: Intraperitoneally injected cryopreserved MSCs home to and engraft into the inflamed colon and ameliorate TNBS-colitis

    HGF/SF and its receptor c-MET play a minor role in the dissemination of human B-lymphoma cells in SCID mice

    Get PDF
    The MET protooncogene, c-MET, encodes a cell surface tyrosine kinase receptor. The ligand for c-MET is hepatocyte growth factor (HGF), also known as scatter factor (SF), which is known to affect proliferation and motility of primarily epithelial cells. Recently, HGF/SF was also shown to affect haemopoiesis. Studies with epithelial and transfected NIH3T3 cells indicated that the HGF/SF–c-MET interaction promotes invasion in vitro and in vivo. We previously demonstrated that HGF/SF induces adhesion of c-MET-positive B-lymphoma cells to extracellular matrix molecules, and promoted migration and invasion in in vitro assays. Here, the effect of HGF/SF on tumorigenicity of c-MET-positive and c-MET-negative human B-lymphoma cell lines was studied in C.B-17 scid/scid (severe combined immune deficient) mice. Intravenously (i.v.) injected c-MET-positive (BJAB) as well as c-MET-negative (Daudi and Ramos cells) B-lymphoma cells formed tumours in SCID mice. The B-lymphoma cells invaded different organs, such as liver, kidney, lymph nodes, lung, gonads and the central nervous system. We assessed the effect of human HGF/SF on the dissemination of the B-lymphoma cells and found that administration of 5 μg HGF/SF to mice, injected (i.v.) with c-MET-positive lymphoma cells, significantly (P = 0.018) increased the number of metastases in lung, liver and lymph nodes. In addition, HGF/SF did not significantly influence dissemination of c-MET-negative lymphoma cells (P = 0.350 with Daudi cells and P = 0.353 with Ramos cells). Thus the effect of administration of HGF/SF on invasion of lymphoma cells is not an indirect one, e.g. via an effect on endothelial cells. Finally, we investigated the effect of HGF/SF on dissemination of c-MET-transduced Ramos cells. In response to HGF/SF, c-MET-transduced Ramos cells showed an increased migration through Matrigel in Boyden chambers compared to wild-type and control-transduced Ramos cells. The dissemination pattern of c-MET-transduced cells did not differ from control cells in in vivo experiments using SCID mice. Also no effect of HGF/SF administration could be documented, in contrast to the in vitro experiments. From our experiments can be concluded that the HGF/SF–c-MET interaction only plays a minor role in the dissemination of human B-lymphoma cells. © 1999 Cancer Research Campaig

    Ablation of Doublecortin-Like Kinase 1 in the Colonic Epithelium Exacerbates Dextran Sulfate Sodium-Induced Colitis

    Get PDF
    We would like to acknowledge Jim Henthorn of the University of Oklahoma Health Sciences Center Flow Cytometry and Imaging Core for his assistance in Bio-Plex data collection and analysis.Doublecortin-like kinase 1 (Dclk1), a microtubule-associated kinase, marks the fifth lineage of intestinal epithelial cells called tuft cells that function as tumor stem cells in Apc mutant models of colon cancer. In order to determine the role of Dclk1 in dextran sulfate sodium (DSS) induced colonic inflammation both intestinal epithelial specific Dclk1 deficient (VillinCre;Dclk1f/f) and control (Dclk1f/f) mice were fed 3% DSS in drinking water for 9 days, allowed to recover for 2 days, and killed. The clinical and histological features of DSS-induced colitis were scored and immunohistochemical, gene expression, pro-inflammatory cytokines/chemokines, and immunoblotting analyses were used to examine epithelial barrier integrity, inflammation, and stem and tuft cell features. In DSS-induced colitis, VillinCre;Dclk1f/f mice demonstrated exacerbated injury including higher clinical colitis scores, increased epithelial barrier permeability, higher levels of pro-inflammatory cytokines and chemokines, decreased levels of Lgr5, and dysregulated Wnt/b-Catenin pathway genes. These results suggest that Dclk1 plays an important role in regulating colonic inflammatory response and colonic epithelial integrity.Yeshttp://www.plosone.org/static/editorial#pee

    Ste20-Related Proline/Alanine-Rich Kinase (SPAK) Regulated Transcriptionally by Hyperosmolarity Is Involved in Intestinal Barrier Function

    Get PDF
    The Ste20-related protein proline/alanine-rich kinase (SPAK) plays important roles in cellular functions such as cell differentiation and regulation of chloride transport, but its roles in pathogenesis of intestinal inflammation remain largely unknown. Here we report significantly increased SPAK expression levels in hyperosmotic environments, such as mucosal biopsy samples from patients with Crohn's disease, as well as colon tissues of C57BL/6 mice and Caco2-BBE cells treated with hyperosmotic medium. NF-κB and Sp1-binding sites in the SPAK TATA-less promoter are essential for SPAK mRNA transcription. Hyperosmolarity increases the ability of NF-κB and Sp1 to bind to their binding sites. Knock-down of either NF-κB or Sp1 by siRNA reduces the hyperosmolarity-induced SPAK expression levels. Furthermore, expression of NF-κB, but not Sp1, was upregulated by hyperosmolarity in vivo and in vitro. Nuclear run-on assays showed that hyperosmolarity increases SPAK expression levels at the transcriptional level, without affecting SPAK mRNA stability. Knockdown of SPAK expression by siRNA or overexpression of SPAK in cells and transgenic mice shows that SPAK is involved in intestinal permeability in vitro and in vivo. Together, our data suggest that SPAK, the transcription of which is regulated by hyperosmolarity, plays an important role in epithelial barrier function
    corecore